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ABSTRACT

We present a framework for speech enhancement and ro-
bust speech recognition that exploits the harmonic structure
of speech. We achieve substantial gains in signal to noise ra-
tio (SNR) of enhanced speech as well as considerable gains
in accuracy of automatic speech recognition in very noisy
conditions.

The method exploits the harmonic structure of speech
by employing a high frequency resolution speech model in
the log-spectrum domain and reconstructs the signal from
the estimated posteriors of the clean signal and the phases
from the original noisy signal.

We achieve a gain in signal to noise ratio of 8.38 dB for
enhancement of speech at 0 dB. We also present recognition
results on the Aurora 2 data-set. At 0 dB SNR, we achieve
a reduction of relative word error rate of 43.75% over the
baseline, and 15.90% over the equivalent low-resolution al-
gorithm.

1. INTRODUCTION

A long standing goal in speech enhancement and robust
speech recognition has been to exploit the harmonic struc-
ture of speech to improve intelligibility and increase recog-
nition accuracy.

The source-filter model of speech assumes that speech
is produced by an excitation source (the vocal cords) which
has strong regular harmonic structure during voiced phonemes.
The overall shape of the spectrum is then formed by a fil-
ter (the vocal tract). In non-tonal languages the filter shape
alone determines which phone component of a word is pro-
duced (see Figure 2). The source on the other hand intro-
duces fine structure in the frequency spectrum that in many
cases varies strongly among different utterances of the same
phone.

This fact has traditionally inspired the use of smooth
representations of the speech spectrum, such as the Mel-
frequency cepstral coefficients, in an attempt to accurately
estimate the filter component of speech in a way that is in-
variant to the non-phonetic effects of the excitation[1].

There are two observations that motivate the consider-
ation of high frequency resolution modelling of speech for
noise robust speech recognition and enhancement. First is
the observation that most noise sources do not have har-
monic structure similar to that of voiced speech. Hence,
voiced speech sounds should be more easily distinguish-
able from environmental noise in a high dimensional signal
space1.
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Fig. 1. The noisy input vector (dot-dash line), the corre-
sponding clean vector (solid line) and the estimate of the
clean speech (dotted line), with shaded area indicating the
uncertainty of the estimate (one standard deviation). Notice
that the uncertainty on the estimate is considerably larger in
the valleys between the harmonic peaks. This reflects the
lower SNR in these regions. The vector shown is frame 100
from Figure 2

A second observation is that in voiced speech, the signal
power is concentrated in areas near the harmonics of the
fundamental frequency, which show up as parallel ridges in

1Even if the interfering signal is another speaker, the harmonic structure
of the two signals may differ at different times, and the long term pitch
contour of the speakers may be exploited to separate the two sources [2].
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Fig. 2. Spectrogram of clean speech. The words ’TWO
FIVE’ are being spoken.

the spectrogram (see Figure 2). In a noisy environment, the
local signal to noise ratio along the ridge is greater than the
average SNR.

Figure 1 shows the estimate of a clean speech vector,
the noisy input vector (car noise), and the true clean speech
vector for comparison. The horizontal axis shows frequency
in Hertz, and the vertical axis shows log-energy of the am-
plitude of each frequency. The regularly spaced peaks are
the harmonics of the fundamental frequency. Notice that
at the low end of the frequency range, the true signal is
’submerged’ in the noise, whereas the harmonic peak at
c.a. 670Hz and 900Hz emerge from the noise. Notice also
that the first standard deviation (shown as a shaded area) of
the estimate is large in the valleys, where the SNR is low
and smaller around the harmonic peaks, where the SNR is
higher. The method for producing the clean speech estimate
is discussed in Section 2.

Researchers have sought to exploit this localization of
signal power, both in the time domain and in the frequency
domain. Methods for achieving this goal include alignment
and gating of the glottal impulses in the time domain[3],
and tracking the pitch as a pre-processing stage[4, 5]. Such
approaches use highly constrained voicing models that are
incongruous to the modelling of other aspects of the speech
signal and employ modularized, multistage processing where
aspects of the voicing are processed separately[6]. These
approaches have been vulnerable to noise because of im-
plicit independence assumptions or because the voicing es-
timation does not take noise into account. In addition, there
may be excitation patterns and artifacts of the signal analy-
sis that are poorly captured by such highly constrained mod-
els for harmonic structure. In contrast, our approach is to
use a single high resolution log-spectrum model for both
excitation and filter and train a model capable of capturing
the relevant structures.
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(a) Spectrogram of speech at 0 dB
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(b) Spectrogram of cleaned speech at 0 dB.

2. MODEL BASED SIGNAL ENHANCEMENT

The core of the method involves calculating posteriors for
the high frequency resolution log-spectrump(x|y), given
the noisy speech. We employ the Algonquin framework
[7, 8] to calculate these posteriors.

The model for noisy speech in the time domain is (omit-
ting the channel for clarity)

y[t] = x[t]+n[t]. (1)

wherex[t] denotes the clean signal,n[t] denotes the noise,
andy[t] denotes the noisy signal. In the Fourier domain, the
relationship becomes

Y( f ) = X( f )+N( f ) (2)

where f designates the frequency component of the FFT.
This can also be written in terms of the magnitude and the



phase of each component:

|Y( f )|6 Y( f ) = |X( f )|6 X( f )+ |N( f )|6 N( f ) (3)

where |Y( f )| is the magnitude ofY( f ) and 6 Y( f ) is the
phase.

We model only the magnitude components and do not
explicitly model the phase components. The relationship
between the magnitudes is

|Y( f )|2 = |X( f )|2 + |N( f )|2 +2|X( f )||N( f )|cos(θ) (4)

whereθ is the angle betweenX andN. For the purposes of
modelling, we assume the we can model the last term as a
noise term, hence we approximate this relationship between
magnitudes as

|Y( f )|2 = |X( f )|2 + |N( f )|2 +e (5)

where thee is a random error [8]. Next we take the log-
arithm and arrive at the relationship in the high resolution
log-magnitude-spectrum domain

y = x+ ln(1+exp(n−x))+ ε (6)

whereε is assumed to be Gaussian. Hence, we can also
write this relationship in terms of a distribution over the
noisy speech featuresy as

p(y|x,n) = N(y;x+ ln(1+exp(n−x)),ψ) (7)

whereψ is the variance ofε, andN(y|µ,ψ) denotes a normal
density function iny with meanµ and varianceψ.

The transformations that we have applied to the model
above are the same as the first steps in the calculation of the
Mel frequency cepstrum features with the exception that we
did not perform the Mel-scale warping before applying the
log transform. For example, in the Aurora front end[9], the
Mel-scale warping, smooths out the harmonics and reduces
the dimensionality of the feature vector from 128 dimen-
sions to 23 dimensions. The result of omitting the Mel-scale
warping is that we do not smooth out the speech harmonics.

For the purpose of signal reconstruction, we are inter-
ested in likely values of clean speech, given the noisy speech.
By recasting this relationship in terms of a likelihoodp(y|x,n),
and using prior models for speechp(x) and noisep(n), we
can arrive at a posterior distribution for the clean speech
vectorp(x|y). This will be described in the next section.

By inverting the procedure described above we can re-
construct an estimate of the clean signal. To do this we find
the MMSE estimate for clean speechx̂ and calculate the in-
verse Fourier transform

x̂[t] = IFFT (exp(x̂) · 6 Y) (8)

wherex̂=
∫

xp(x|y)dx. In this reconstruction, we have used
the original phases from the noisy signal.

2.1. Inference

We now turn our attention to the procedure for estimating
the posterior for the clean speech log-magnitudesp(x|y).
For this we employ the Algonquin method. Extensive evalu-
ations of this framework have been performed in the context
of robust speech recognition. In previous work, speech and
noise models have either been in the ”low-resolution” log-
Mel-spectrum domain, or in the truncated cepstrum domain.
Here we briefly outline the Algonquin procedure. Detailed
discussions can be found in [7, 8].

At the heart of the Algonquin method is the approxima-
tion of the posteriorp(x|y) by a Gaussian.

The true posterior

p(x|y) = c
∫

p(y|x,n)p(n)p(x)dn (9)

is non-Gaussian, due to the non-linear relationship in Eqn.
(6). In Eqn. (9)c is a normalizing constant,p(n) is the
noise model, andp(x) is the speech model, andp(y|x,n) is
the likelihood function discussed above.

We use a mixture of Gaussians to model both speech
and noise. Hence

p(x) = ∑
s

p(s)p(x|s) = ∑
s

πsN(x|µs
s,Σ

x
s) (10)

and similarly forp(n). The construction of the speech model
will be discussed below.

Due to the non-linear relationship betweenx andn for a
giveny, the true posteriorp(x|y) is non-Gaussian. We wish
to approximate this posterior with a Gaussian posterior. The
first step is to linearize the relationship betweenx andn.

For notational convenience, we write the stacked vector
z= [xTnT ] and we introduce the functiong(z) = x+ ln(1+
exp(n−x)).

If we linearize the relationship of Eqn. (6) using a first
order Taylor series expansion at the pointz0, we can write
the linearized version of the likelihood

pl (y|x,n) = pl (y|z) = N(y;g(z0)+G(z0)(z−z0),Ψ) (11)

wherez0 is the linearization point andG(z0) is the deriva-
tive of g, evaluated atz0. We can now write a Gaussian
approximation to the posterior for a particular speech and
noise combination as

pl (x,n,y|sx,sn) = pl (y|x,n)p(x|sx)p(n|sn) (12)

It can be shown[8] that thep(x,n|y,sx,sn) is jointly Gaus-
sian with mean

ηs = Φs
[
Σ−1

s µs+GTΨ−1(y−g−Gz0)
]

(13)

and covariance matrix

Φs =
[
Σ−1

s +GTΨ−1G
]−1

(14)



and the posterior mixture probabilityp(y|sx,sn) can be shown
to be

γs = |Σs|−1/2|Ψ|−1/2|Φs|1/2 ·exp

[
− 1

2
(µT

s Σ−1
s µs+

(yobs−g+Gz0)TΨ−1(yobs−g+Gz0)−

ηT
s Φ−1

s ηs)
]
. (15)

The choice of the linearization point is critical to the
accuracy of the approximation. Ideally, we would like to
linearize at the mode of the true posterior. In the Algonquin
algorithm, we attempt to iteratively move the linearization
points towards the mode of the true posterior. In iteration
i of the algorithm, the mode of the approximate posterior
in iterationi−1, µi−1 is used as a linearization point of the
likelihood, i.e. zi = µi−1. The algorithm converges in 3-4
iterations.

2.2. Speech Model

Speech modelling for enhancement and speech recognition
usually involves dimensionality reduction which removes
the voice harmonics. This is either done explicitly, such
as by using the Mel-warping, or implicitly, such as by us-
ing a small auto-regressive model. The filter and excitation
components of the generative speech model are relatively
independent, since voiced speech sounds can be spoken at
any pitch. To model a particular speech sound in high res-
olution, one would expect to need an instance of the voiced
acoustic model at each possible pitch.

A first approximation is to model the filter and excitation
components independently. To construct such a model, one
would lifter the 128 frequency component speech vectors to
produce 128 component filter (vocal tract) features and 128
component excitation (vocal cords) features. This approach
has the advantage that the models are compact, and indepen-
dent temporal dynamics can be efficiently employed on each
component, as in [2]. However, the model over-generates
speech by allowing combinations of unvoiced excitation and
voiced filters and vice versa, and the computations required
for temporal dynamics may be too costly in many cases.

An alternate strategy is to simply train a single non-
factored high resolution speech model. In the experiments
described below, we used non-factored Gaussian mixture
models (GMM). We trained two models: a speaker inde-
pendent gender independent model, and a speaker indepen-
dent gender dependent model. The speaker independent,
gender independent model had 512 mixtures, and 128 fre-
quency components, while the gender dependent model had
512 mixtures for the male component and 512 mixtures for
the female component. These models were trained in the
standard way[10], by initializing using vector quantization,

and then using Expectation Maximization to find the param-
eters of the GMMs.

Although this approach is not as efficient as the factored
model, with respect to the number of parameters required to
represent combinations of voiced filters at different pitches,
it has the advantage that it does not over-generate speech.

2.3. High Resolution Signal Reconstruction

To reconstruct the signal, we first calculate high resolution
log-spectral features of the noisy input signal as described in
Section 2. In the feature extraction stage, we used hamming
windows of length 25 ms, and the frame rate of 10 ms. A
corresponding synthesis window is designed such that the
analysis window multiplied by the synthesis window, and
overlapped with neighboring analysis-synthesis windows at
the frame rate, sums to unity at each time point.

We smooth the high resolution log-spectrum features
across frames by filtering them temporally with a simple
FIR filter with parameters [0.25 0.5 0.25]. Without this
smoothing step, the inference algorithm tends to produce
spurious errors.

The Algonquin algorithm is then used to infer the pos-
terior distributions over the clean speech. In the results re-
ported below, we used the MMSE estimate based onp(x|y).
This is then exponentiated and used as a point estimate for
|X( f )|. Alternately, we could use the MMSE estimate of

̂|X( f )|2 = E[exp(x)]. However, the fact that the speech rec-
ognizer operates on the log spectrum domain motivates the
former rather than the latter estimate.

We then reconstruct each frame of the signal, by use
of the inverse Fourier transform, as in Eqn. (8), where the
phase components are the phases of the noisy signal. The
frames are then overlapped and added together using the
tapered synthesis window described above.

3. RESULTS

We tested the high resolution signal enhancement for speech
enhancement as well as for robust speech recognition.

3.1. Speech Enhancement Results

In informal listening tests, the subjective quality of the en-
hanced speech was reported to be exceptionally good. At
very low SNR (-5 dB and 0 dB), the most notable distortion
in the enhanced speech is flutter due to the inference algo-
rithm assigning low energy fricatives to periods of silence,
as well as silences in low energy voiced portions. At higher
decibel levels (15 dB and 20 dB) the enhanced speech is
almost indistinguishable from clean speech.

In Table 1 we give dB gains for the car noise condition
of the Aurora data set. The first row shows SNR computed



-5 dB 0 dB 5 dB 10 dB 15 dB 20 dB

∆SNR 10.76 8.38 6.27 3.95 1.28 -1.94
∆SNRseg 6.82 6.58 6.12 5.35 4.29 2.87

Table 1. Gains in Signal to Noise Ratio for Car noise at a
range of SNR. The two measures of SNR are for standard
SNR and Segmental SNR. For segmental SNR, we used a
window of 25 ms, a SNR floor of -10 dB and an SNR ceiling
of 35 dB.

over the whole waveform, while the second row shows seg-
mental SNR, computed using a floor of -10 dB and a ceiling
of 35 dB.

3.2. Aurora Speech Recognition Results

To assess the performance of high resolution signal recon-
struction for speech recognition, we ran experiments on the
Aurora 2 data-set. The Aurora 2 data-set contains spoken
digits, artificially mixed with various noise types at Signal
to noise ratios of -5 dB to 20 dB, in addition to unaltered
clean speech. There are 1001 test files in each condition,
where each test file contains from 1 to 7 spoken digits. In the
experiments below, we report results for the Car noise con-
dition. This condition has relatively stationary noise which
allows us to use a single Gaussian noise model, estimated
from the first 20 frames of each file. Other conditions such
as “Subway” require larger noise models to handle the non-
stationary aspect. In previous work, it has been shown [8]
that using low-resolution Algonquin with larger noise mod-
els, as well as adapting the noise model will produce con-
siderable gains in recognition accuracy, at the expense of
higher computational complexity.

The standard low-resolution Algonquin method produces
estimates of clean parameters in the 23 dimensional log-
Mel-spectrum domain. For the recognition experiments,
these are converted to cepstrum parameters directly, by tak-
ing the discrete cosine transform. For the high resolution
signal reconstruction experiments, the time domain signal
was reconstructed and the standard Aurora front end was
then used to produce cepstrum parameters from the time do-
main signals.

The graph in Figure 3 shows the recognition accuracy
for the Car noise condition of Set A of the Aurora 2 data-set,
using multi-condition training of the acoustic models. We
used the standard Aurora back-end, which is an HTK based
recognizer with 16 state, left-to-right word models with 3
mixture acoustic models in each state. Figure 5 shows the
change in absolute Word accuracy over the baseline, and
Figure 4 shows the change in word error rate due to high
resolution processing.

The baseline of 86.52% is shown as the bottom line in
Figure 3. The result for “low-resolution” log-Mel-spectrum

is the middle line in Figure 3. The speech model used was a
Gaussian mixture model with 256 components, of 23 di-
mensions each. The low-resolution Algonquin algorithm
achieves an average recognition accuracy of 90.12% for the
Car noise condition, which is a relative reduction error rate
of 13.26%.
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The results for high resolution signal reconstruction with
a speaker independent, gender dependent model is the top
line in Figure 3. The average accuracy is 91.14%, which is a
relative reduction in average word error rate of 15.62% over
the baseline. Using gender independent high-resolution mod-
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els achieves a slightly lower average accuracy of 91.04%.
It is more interesting to compare the recognition rates

for low-resolution Algonquin and high-resolution Algonquin.
Interestingly, the gains are mostly achieved at -5 dB and 0
dB. The increases in word accuracy are 5.28% and 13.48%
absolute (16.95% and 19.02% reduction in WER respec-
tively), while at higher SNRs the recognition rates are al-
most identical. This indicates that the advantages of using
voicing information are mostly at very low signal-to-noise
ratios. It also supports the assumption that voicing informa-
tion is not helpful for speaker-independent recognition of
clean speech in non-tonal languages.

4. DISCUSSION AND CONCLUSIONS

Our findings support the hypothesis that high resolution spec-
tral information is quite useful for enhancing noisy speech
and substantially helps recognition in very noisy conditions.
At the same time, our findings are consistent with the widely
held assumption that low-resolution spectral components are
sufficient for speaker-independent recognition of clean speech.

The traditional approach for exploiting harmonic struc-
ture is to employ parametric models with a small number
of parameters for the excitation component of the signal.
This can lead to heterogeneous models and make it difficult
to jointly estimate parameters related to excitation and fil-
ter in noisy conditions. The model presented in this paper
avoids such pitfalls by employing a combined excitation-
filter speech model. The size of model required is surpris-
ingly small. Our model presents an advantage over models

that factorize the excitation and filter components in that we
can model statistical dependencies between the excitation
and filter components of a signal.

We have incorporated this information into a probabilis-
tic model in a principled way that is compatible with the
current paradigm in speech processing.
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